
پروژه دانشجویی مقاله Chotic (بی نظمی) تحت word دارای 15 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد پروژه دانشجویی مقاله Chotic (بی نظمی) تحت word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است
بخشی از فهرست مطالب پروژه پروژه دانشجویی مقاله Chotic (بی نظمی) تحت word
بی نظمی را با اتفاقی بودن اشتباه نگیرید
ویژگی های موضوعات اتفاقی
ویژگیهای سیستم های بی نظم
شرایط لازم و ضروری برای سیستم های بی نظم
اندازه و گنجایش یک مربع و خط;
نمودارهای چند شاخه
شباهت آونگ به سیستم های بینظم ساده
عدد Feigenbaum;
Confidence intervals
فاصله صحیح Gussian
Classical approach
Baysiax approach
بی نظمی را با اتفاقی بودن اشتباه نگیرید
ویژگی های موضوعات اتفاقی
1-تجدیدنشدنی و غیرقابل تولید دوباره
2-غیرقابل پیشگویی
ویژگیهای سیستم های بی نظم
1-بیاختیار بودن (مثل حالتهایی که به همان حالتهای نهایی BUT منجر می شود و حالت نهایی برای تغییرات کوچک که با حالت نخستین بسیار متفاوت است)
2-بسیار مشکل یا غیرممکن بودن برای پیشگویی کردن
مطالعه سیستم های بی نظم اکنون یکی از رشته های موردتوجه و محبوب فیزیک است که در این زمینه تا قبل از اینکه کامپیوتر بتواند پاسخگوی مشکلات باشد اطلاعات کمی وجود داشت
بی نظمی در خیلی از سیستم های فیزیکی دیده می شود برای مثال
1-دینامیک سیالات (هواشناسی)
2-بعضی واکنشهای شیمیایی
3-لیزرها
4-ماشینهایی که می تواند با سرعت بالا ذره های ابتدایی را بسازد (شتابدهنده ها)
شرایط لازم و ضروری برای سیستم های بی نظم
1-این سیستم ها دارای 3 متغیر مستقل دینامیکی اند
2-معادلات حرکت یا مسیر حرکت که غیرخطی می باشند
از معادلات یک آونگ که دارای حرکت میرا می باشد برای شرح دادن و ثابت کردن طرحهای بی نظمی استفاده می شود که دارای معادلات حرکت به صورت می باشد . ما بجای این از یک شکل بدون بعد با معادله استفاده می کنیم
متغیرهای دینامیکی در معادله بالا عبارتند از t و و و دوره غیرطولی
ما قبلاً دیدیم که آونگ فقط برای نمادهای q و و بی نظم است که از این موضوع در مثالهای زیر استفاده می کنیم
برای مشاهده آغاز بی نظمی (وقتی که کاهش یافته) به مسیر حرکت سیستم در مرحله ای از فضا و فاصله گرفتن ذرات از هم توجه می کنیم که یکدفعه به صورت زودگذر محو می شوند . توجه کنید دوره دو برابر یا مضاعف بدست آمده قبل از آغاز بی نظمی ها است
حالت منحنی های فضایی که دیدیم دومین مرحله از تمام سه مرحلهی حالتهای فضایی است که به طور کامل آونگ را توصیف می کند . این طرح ها جزئیات پیچیده سطح بی نظم آونگ را پنهان می کنند
قسمت PoinCare قسمتی از سومین مرحله فضایی در یک قاعده ثابت است . این ها آنالوگهایی برای دیدن پیشرفت حالت فضایی حالت آونگ می باشد که یک قسمتی از یک دوره با نیروی محرک می باشد . تناوب مسیر حرکت در یک مرحله انجام می شود و تناوب مضاعف شدن نیرو و نیز در 2 مرحله انجام می شود
Attractors : سطوحی که آونگ در حالت حرکت در فضا از آن پیروی می کند و بعد از مسیر زودگذر ضعیف می شود
یک Attractors در یک آونگ ثابت (بدون بعد حرکت) دارای یک نکته خاصی میباشد که می باشد . یک Attractors تناوب آونگ یک خط منحنی میباشد که در اولین مرحله و سومین مرحله در فضای حرکت می باشد)
Attractor بی نظم گاهی Attractor قوی نامیده می شود که در این حالت اندازه ها بین 2 تا 3 می باشد ()
اندازه و گنجایش یک مربع و خط
