
پروژه دانشجویی مقاله بررسی سیگنالهای الکترو مایوگرافی در حرکت دست تحت word دارای 187 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد پروژه دانشجویی مقاله بررسی سیگنالهای الکترو مایوگرافی در حرکت دست تحت word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است
بخشی از فهرست مطالب پروژه پروژه دانشجویی مقاله بررسی سیگنالهای الکترو مایوگرافی در حرکت دست تحت word
چکیده
مقدمه 1
فصل اول : آشنایی با الکترومایوگرافی
1-1 مقدمه 3
2-1 الکترومایوگرافی چیست ؟ 3
3-1 منشأ سیگنال EMG کجاست ؟ 7
1-3-1 واحد حرکتی 7
4-1 آناتومی عضله 8
1-4-1 رشته عضلانی واحد 8
2-4-1 ساختار سلول ماهیچه 8
5-1 انقباض عضلانی 9
6-1 تحریکپذیری غشاء عضله 11
7-1 تولید سیگنال EMG 12
1-7-1 پتانسیل عمل 12
8-1 ترکیب سیگنال EMG 14
1-8-1 انطباق واحدهای حرکتی 14
9-1 فعال سازی عضله 15
10-1 طبیعت سیگنال MMG 16
11-1 فاکتورهای موثر بر سیگنال EMG 18
فصل دوم :انواع سیگنالهای الکترومایوگرافی و روشهای طراحی
1-2 انواع EMG 21
2-2 الکترومایوگرافی سطحی : ردیابی و ثبت 22
1-2-2 ارتباطات کلی 22
2-2-2 مشخصههای سیگنال EMG 23
3-2 مشخصههای نویز الکتریکی 24
1-3-2 نویزمحدود شده 24
2-3-2 آرتی فکتهای حرکتی 24
3-2-2 ناپایداری ذاتی سیگنال 25
3-2 بیشینه سیگنال EMG 25
4-2 طراحی الکترود و آمپلی فایر 26
5-2 تقویت تفاضلی 26
6-2 امپدانس داخلی 28
7-2 طراحی الکترودفعال 29
8-2 فیلترینگ 29
9-2 استقرار الکترود 30
10-2 روش مرجح مصرف 30
11-2 هندسه الکترود 30
1-11-2 نسبت سیگنال به نویز 31
2-11-2 پهنای باند 32
3-11-2 سایر ماهیچه نمونه 32
4-11-2 قابلیت cross talk 33
12-2 بار موازی الکترود 33
13-2 قرار دادن الکترود EMG 34
1-13-2 تعیین مکان و جهتیابی الکترود 34
2-13-2 نه روی نقطه محرک 35
3-13-2 نه روی نقطه محرک 36
4-13-2 نه در لبهی بیرونی ماهیچه 37
14-2 موقعیت الکترود نسبت به فیبرهای ماهیچه 37
15-2 قرار دادن الکترود مقایسه 38
16-2 پردازش سیگنال EMG 39
17-2 کاربردهای سیگنالEMG 40
18-2 الکترومایوگرافی سوزنی 41
19-2 مزایا و معایب الکترودهای سطحی و سوزنی 43
1-19-2 مزیتهای الکترود سطحی 43
2-19-2 معایب الکترودهای سطحی 43
3-19-2مزایای الکترودهای سوزنی 43
4-19-2 معایب الکترودهای سوزنی 44
20-2 تفاوت موجود بین الکترودهای سطحی وسوزنی 45
21-2 انواع طراحی 45
فصل سوم :مفاهیم اساسی در بدست آوردن سیگنال EMG
1-3 مقدمه 48
2-3 معرفی 48
1-2-3 نمونهبرداری دیجیتال چیست ؟ 48
2-2-3 فرکانس نمونهبرداری 49
3-2-3 فرکانس نمونهبرداری چقدر باید بالا باشد ؟ 49
4-2-3 زیر نمونهبرداری – وقتی که فرکانس نمونهبرداری خیلی پائین باشد 52
5-2-3 فرکانس نایکوئیست 53
6-2-3 تبصرهی کاربردی DELSYS 54
3-3 سینوسها و تبدیل فوریه 54
1-3-3 تجزیه سیگنالها به سینوسها 55
2-3-3 دامنه فرکانس 57
3-3-3 مستعارسازی – چطور از آن دوری کنیم ؟ 59
4-3-3 فیلترپارمستعاد 61
5-3-3نکته کاربردی DELSYS 63
4-3 فیلترها 64
1-4-3 انواع فیلترهای ایده آل 65
2-4-3 پاسخ فاز ایدهآل 67
3-4-3 فیلتر کاربردی 68
4-4-3پاسخ فاز غیر خطی 71
5-4-3 اندازهگیری ولتاژ – دامنه ، توان ودسی بل 72
6-4-3 فرکانس 3 Db 74
7-4-3 مرتبه فیلتر 75
8-4-3 انواع فیلتر 76
9-4-3 فیلترهایdigital – Analog Vs 80
10-4-3 نکته کاربردی Delsys 84
5-3 رسیدگی به مبدلهای آنالوگ به دیجیتال 85
1-5-3 کوانتایی سازی 85
2-5-3 رنج دینامیکی 87
3-5-3 کوانتایی سازی سیگنال EMG 90
4-5-3 مشخص ک ردن ویژگیهای ADC 92
5-5-3 نکته کاربردی Delsys 95
6-3 نتیجهگیری 95
فصل 4: بکارگیری مناسبت نیرویgrip مبنی بر سیگنال EMG
1-4 مقدمه 98
2-4دید کلی پایهای یک سیستم 98
3-4 منطقی برای تولید نیروی گریپ 99
4-4 دستاورد 102
5-4 نتیجه 103
فصل پنجم : طبقهبندی سیگنال EMG برای شناسایی سیگنال دست
1-5 مقدمه 105
2-5 سیگنالهای EMG و سیستم اندازهگیری 107
3-5 طرح ویژگی خود سازمان دهی 107
4-5 روش طبقه بندی سیگنال EMG پیشنهادی 109
5-5 نتیجهگیری 117
فصل 6: ارتباط بین نیروی ماهیچهای ایزومتریک و سیگنال EMG به
عنوان هندسه بازو
1-6 مقدمه 119
2-6 نتایج 121
3-6 بحث 123
1-3-6 ارتباط EMG- Force 127
2-3-6 رابط نیروی MF 129
3-3-6 رابطهی درصد نیروی DET 131
4-3-6 نتایج 131
4-6 روش تجربی 132
1-4-6 اشخاص 132
2-4-6 مجموعه تجربی 132
3-4-6 مدارک EMG و نیرو 133
4-4-6 تحلیلهای EMG غیر خطی 135
5-4-6 تحلیلهای آماری و پارامترها 136
5-6 نتیجهگیری 136
فصل 7: طبقهبندی سیگنال EMG برای کنترل دست مصنوعی
1-7 مقدمه 138
2-7 روشها 140
3-7 آزمایش و نتایج 141
1-3-7 نتیجهگیری 142
فصل 8 : یک استخوانبندی کنترل شده توسط EMG برای نوسازی دست
1-8 مقدمه 144
2-8 سیستم اصلاح دست 148
1-2-8 استخوانبندی خارجی 148
2-2-8 الکترونیک و نرم افزار 149
3-8 پردازش EMG 151
4-8 تستهای اولیه دستگاه 153
1-4-8 نتیجهگیری 155
2-4-8 کارهای آینده 156
فصل نهم : یک مدار آنالوگ جدید بر ای کنترل دست مصنوعی
1-9 مقدمه 158
2-9 چکیدهای از سیستم 160
3-9 پیادهسازی مدار 163
4-9 نتایج شبیه سازی 166
5-9 نتیجهگیری 168
فهرست تصاویر
فصل 1
شکل 1 : نمونهای از سیگنالEMG 7
شکل 2: واحد حرکتی 8
شکل 3: مدل آناتومی عضله 9
شکل 4: اکتین و میوزین و باندهای مربوط به آن 11
شکل 5: پروسه انقباض عضله 12
شکل 6: شماتیک تصویری سیکل دپلاریزاسیون / پلاریزاسیون درون
غشاهای تحریک شونده 13
شکل 7: نمودار پتانسیل عمل 13
شکل 8: ناحیهی دپلاریزاسیون در غشاء فیبرعضلانی 14
شکل 9: پتانسیل عمل واحدهای حرکتی متعدد 14
شکل 10: بکارگیری و فرکانس شروع واحدهای حرکتی نیرو 15
شکل 11: ثبت سیگنال خام سه انقباض برای عضله سه سر 16
شکل 12: سیگنال خام EMG با تداخل سنگین ECG 19
فصل 2
شکل 1 :طیف فرکانسی سیگنال EMG آشکار شده جلوی ماهیچه 23
شکل 2: طرحهای شکل تقویت کننده تفاضلی 28
شکل 3: ارائه طرح کلی بارو ترکیبات مدور بر الکترود 34
شکل 4: مکان مرجع الکترود بین تاندون و بخش حرکتی 35
فصل3
شکل 1: سیگنال آنالوگ کشف شده توسط الکترود DE2.1 49
شکل 2: A) نمونهبرداری از سینوس 1 ولت ، 1 هرتز در 10 هرتز 51
B) بازآفرینی سینوس نمونهبرداری شده در 10 هرتز 51
شکل 3: A) نمونهبرداری یک سینوس 1 ولت ، 1 هرتز در 2 هرتز 52
B) بازآفرینی سینوس نمونه برداریشده در 2 هرتز 52
شکل 4: A) نمونهبرداری یک سینوس 53
شکل 5: تجزیهی فوریهی یک پتانسیل عمل واحد حرکتی نمونهبرداری شده 56
شکل 6 : هیستوگرام دامنه 10 سینوس شکل 5 58
شکل7: طیف موج فرکانسی سیگنال نمونه در شکل 6 60
شکل 8 : مستعار سازی نویز 13 61
شکل 9 : پاد مستعارسازی 62
شکل 10: انواع فیلترها 66
شکل 11: طرح فاز یک فیلترایده آل 68
شکل 12: خصوصیات فیلترهای کاربردی 72
جدول 1: فاکتورهای تضعیف وگین نمونه 74
شکل 13: فیلتر پائین گذر مرتبه اول و دوم 76
شکل 14: اندازه ومقایسه انواع فیلترهای بالاگذر 79
شکل 15: فیلتر پائین گذر تک قطبی 82
شکل 16: نمونهبرداری و فیلتر دیجیتالی سیگنال آنالوگ 83
شکل 17: مراحل کوانتایی سازی مبدل آنالوگ به دیجیتال 86
شکل 18: تحلیل رنج A/D 89
فصل 4
شکل 1: بلوک دیاگرام دستگاه 99
شکل 2: سطوح و شماتیکها 100
شکل 3: نیروهای گریپ 102
فصل 5
شکل 1: بلوک دیاگرام سیستم اندازهگیری سیگنال EMG 110
شکل 2 : موقعیت الکترودها 110
شکل 3: بلوک دیاگرام روش های پیشنهادی 111
شکل 4: سیگنالهای دست برای کاراکترهای کره ای 112
شکل 5: نرونهای خروجی 113
شکل 6: بلوک دیاگرام ترتیب آزمایشگاهی 114
شکل 7: عکس وضعیت آزمایش 114
شکل 8: سیگنال EMG اندازهگیری شده و سیگنال داخلی قابل استفاده 115
شکل 9: نرونهای خروجی sofm1 بعد از مرتب کردن 115
جدول 1: نرونهای خروجی بعد از یادگیری 116
جدول 2: نتایج آزمایش 116
فصل 6
شکل 1 : مقادیر میانگین نیروهای ارادی ماکزیمم در ANT و POST 123
شکل 2 : رابطهی نیروی EMG 124
شکل 3: رابطهی نیروی MF 125
شکل 4: رابطهی درصد نیروی DET 126
شکل 5: دیاگرامهای ارتباط بین فرکانس متوسط و DET 127
فصل 8
شکل 1: طرح هندسی سیستم توانبخشی دست 146
شکل 2: نمای سیستم توانبخشی دست 147
شکل 3: نمای جانبی استخوانبندی بیرونی 148
شکل 4: دستمجازی وواسط درمان 150
شکل 5: محل قرارگیری الکترود سطحی 151
شکل 6: سیگنال EMG یکسو شده 152
فصل 9
شکل 1: بلوک دیاگرام سیستم پیشنهادی 160
شکل 2: دیاگرام حالت کنترل حالات مختلف دست با استفاده از EMG 161
جدول 1: حالات دست وسیگنالهای مربوطه 161
شکل 3: بلوک دیاگرام پردازش سیگنال 162
شکل 4: بلوک دیاگرام تحلیل گر EMG 163
شکل 5: شماتیک مدار پردازش سیگنال 164
جدول 2: اندازهی تراتریستورها 165
شکل 6: سیگنالهای داخلی شبیهسازی شدهی تحلیلگر سیگنال EMG 166
شکل 7: مجموعهی سیگنالهای EMG وپاسخ خروجی ماشین حالت 167
شکل 8: پاسخهای شبیهسازی شده برای تغییرات انگشتان مختلف 167
چکیده
الکترومایوگرافی (EMG) مطالعه عملکرد عضله از طریق تحلیل سیگنالهای الکتریکی تولید شده در حین انقباضات عضلانی است که اندازهگیری آن همراه با تحریک عضله است که میتواند شامل عضلات ارادی و غیرارادی شود این سیگنال به طور کلی به دو دستهی بالینی وKine Siological EMG تقسیمبندی می شود که خود دستهی دوم باز دونوع سوزنی وسطحی را در خود جای میدهدکه هر کدام درجای خود بسته به نوع ماهیچه و بیماری مورد استفاده قرار می گیرند در الکترومایوگرافی آنچه از اهمیت ویژهای برخوردار است نوع طراحی الکترود است که در این مقاله به سه نوع طراحی الکترود اشاره شده است . برای اندازهگیری و ثبت سیگنال الکترومایوگرافی مکان قرار دادن الکترود بسیار مهم میباشد . الکترومایوگرافی موضوع تحقیقی بسیار گستردهای میباشد و پرداختن به هر قسمت آن خود به زمان بسیار زیادی احتیاج دارد در اینجا به بررسی این سیگنال در حرکت دست میپردازیم . برای شناسایی سیگنال دست از طبقهبندی الگوی EMG استفاده میکنند که این طبقهبندی روشهای گوناگونی از جمله swids ، هوش مصنوعی sofms و غیره می باشد که روش مورد بررسی در این تحقیق طبقه بندی الگوی EMG با استفاده از نقشههای خود سازمانده می باشد sofm یک شبکه رقابتی یادگیری بدونکنترلی است که دارای الگوی طبقهبندی میباشد . گر چه طبقه بندی الگوهای EMG بسیار مشکل میباشد اما به حرکت دست کمک زیادی میکند بیشترین استفاده EMG برای نوسازی دست است نوسازی دست اصولاً با استخوان بندی کنترل شده انجام میشود . فعالیت الکتریکی ماهیچهها به ما این اجازه را میدهد که بدانیم آیا بیمار در سعی در تکان دادن انگشتها میکند یا نه
هدف از ارائه استخوان بندی خارجی برای این است که بیمار احساس استقلال بیشتری داشته باشد برای کنترل دستهای مصنوعی مدار آنالوگی طراحی شده است که برای کمک به افراد مقطوع العضو مناسب است که ما در این جا همه این مباحث گفته شده را مورد تحلیل و بررسی قرار میدهیم
فصل اول
آشنایی کلی با سیگنال الکترو مایو گرافی
1-1مقدمه
الکترو ما یو گرافی روشی تجربی در زمینه ی بسط ، ثبت وانالیز سیگنال های الکتریکی عضله است . سیگنال های الکتریکی عضله بوسیله ئگرگونیهای فیزیو لو ژیکی در غشا فیبر عضلانی شکل می گیرند. الکترو مایو گرافی شامل ردیا بی ثبت ، تقویت ،انالیز وتفسیر جهت سیگنال های ایجاد شده توسط عضله اسکلتی ،هنگام فعالیت برای تولید نیرو است.اهداف کلی در این فصل معرفی جامع سیگنال الکترومایو گرافی،وهم چنین منشا ایجاد سیگنال میباشد برای فهم کامل این موضوع شرح مختصری از اناتومی عضله اورده شده است.هم جنین در مورد فاکتور های موثر بر سیگنال توضیح مختصری داده شده که در فصل های اتی به انها پرداخته می شود.به طور کلی در این فصل هدف درک کامل EMGبرای کاربرد درست ان در زمینه های مختلف می باشد،که ما در این تحقیق به بررسی ان در حرکت دست می پردازیم
2-1الکترومایو گرافی چیست؟
الکترو مایو گرافی مطالعه عملکرد عضله از طریق تحلیل سیگنال های الکتریکی تولید شده در حین انقباضات عضلانی است .EMGاغلب به طور نادرستی به وسیله ی پزشکان ومحققان به کار گرفته می شود.در بیشتر موارد حتی الکترو مایو گرافر های با تجربه نیز نمی توانند اطلا عات کافی وجزییات مورد نظر را از پروتکل به دست اورند و لذا محققان دیگر مجازند که کارهای انها را تکرار کنند
الکترومایو گرافی اندازه گیری سیگنال الکتریکی همراه با تحریک عضله است که می تواند شامل عضلات ارادی وغیر ارادی شود.وضعیت EMG انقباصات عضله ارادی به میزان کشش بستگی دارد.واحد عملکری انقباض عضله یک واحد حرکتی است که متشکل از یک نورون الف منفرد وتمام فیبر هایی که از ان منشعب می شوند.وقتی پتانسیل عمل عصب حرکتی که فیبر را تغذیه می کند به استانه ی دپلاریزاسیون برسد فیبر عضله منقبض می شود .دپلاریزاسیون با عث ایجاد میدان الکترو مغناطیسسی می شود واین پتانسیل به عنوان ولتاژ انداره گرفته میشود .دپلاریزاسیون که در طول غشا عضله منتشر می شود یک پتانسیل عمل عضله است .پتانسیل عمل واحد حرکتی مجموع پتانسیل عمل های منفرد تمامی فیبر های یک واحد حرکتی است .بنابراین سیگنال EMG جمع جبری تمام پتانسیل عمل های واحد های حرکتی موجود در ناحیه ای است که الکترود درانجا قرار گرفته است.ناحیه ی قرار گرفتن الکترود معمولا شامل بیش از یک واحد حرکتی است زیرا فیبر های عضلا نی واحد های حرکتی مختلف در تمام طول عضله در ترکیب با هم قرار دارند . هر بخش از عضله می تواند حاوی فیبرهای متعلق به حدود 20 تا 50 واحد حرکتی باشد.یا واحد حرکتی مستقل می تواند دارای 3 تا 2000 فیبر عضله باشد. عضلاتی که پنج حرکت را در کنترل دارند از تعداد فیبر های عضلانی کمتری به ازای هر واحد حرکتی بر خوردارند (معمولا کمتر از 10 فیبر به ازای هر واحد حرکتی).در مقابل عضلاتی که محدودی وسیعی از حرکات را در کنترل دارند دارای 100 تا 1000فیبر در هر واحد حرکتی می باشند . در خلال انقباضات عضلانی ترتیب خاصی وجود دارد به این صورت که واحد های حرکتی با فیبر عضلاتی کمتر درابتدا وسپس واحد های حرکتی دارای فیبر های عضلانی بیشتر منقبض می شوند .تعداد واحدهای حرکتی درعضلات بدن متغیر است .رابطه ای بین EMGبا سایر متغیر های بیو مکانیکی وجود دارد . با در نظر گرفتن انقباضات ایزومتریک ،رابطه ای مثبت در افزایش کشش عضله و دامنه سیگنال ثبت شده EMG وجود دارد . اگرچه یک زمانتاخیر وجود دارد و به این دلیل است که دامنه EMGبه صورت مستقیم با build – up کشش ایزو متریک در تطابق نیست .برای تخمین قدرت تولید شده ازروی سیگنال EMG می بایست دقت زیادی کرد چون اعتبار رابطه ی نیرو با دامنه وقتی تعداد زیادی عضله از یک مفصل منشعب شده اند یا یک عضله به مفاصل متعددی وصل است قطعی نیست .در بررسی فعالیت یک عضله با توجه به انقباضات Concentricوeccentric مشخص می شود که انقباضات eccentric نسبت به انقباضات Concentric در مقابل نیروی وارده برابر فعالیت کمتری در عضله تولید می کنند.همراه با خستگی عضله ،کاهش در میزان کشش عضله اغلب همراه با دامنه ثابت یا حتی بیشتر در فعالیت عضله مشاهده می شود.بخش پر فرکانس سیگنال همراه با خستگی فرد افت می کند و می تواند به صورت کاهش در فرکانس مرکزی سیگنال عضله دیده شود.در خلال حرکت رابطه ای تقریبی بین EMG وسرعت حرکت مشاهده می شود .رابطه ای معکوس بین قدرت انقباض تولید شده بوسیله ی انقباض concentric و سرعت حرکت وجود دارد در حالیکه eccentric توانایی حمل وزنه بیشتر با سرعت بیشتری را دارد. به عنوان مثال اگر وزنه ای بزرگ وسنگین را به سرعت ولی با کنتر ل پایین ببرید ان وزنه ر ابا استفاده از انقباض eccentric پایین برده اید.شما قادر نخواهید بود که وزنه را با همان سرعت پایین بردن ،بالا ببرید (انقباض concentric).نیروی تولید شده لزوما بیشتر نخواهد بود امام شما توانستید وزنه بیشتر ی را حمل کنید و فعالیت EMGدر عضلات مورد استفاده کمتر بوده است.بنابراین رابطه ای معکوس برای انقباضاتconcentric و رابطه ای مثبت برای انقباضات eccentric از نظر سرعت حرکت وجود دارد.از نقطه نظر ثبت سیگنال ،EMG دامنه پتانسیل عمل واحد حرکتی به عوامل مختلفی بستگی دارد نظیر: قطر فیبر عضله ، فاصله بین فیبر عضله فعال ومحل اشکار سازی (ضخامت چربی بافت) .هدف اصلی بدست اوردن سیگنال بدون نویز است.بنابراین نوع الکترود و خصوصیات تقویت کننده نقش حیاتی در بدست اوردن سیگنال بدون نویز ایفا میکند
3-1منشا ء سیگنال EMGکجاست؟
1-3-1واحد حرکتی
واحد حرکتی کوچکترین واحد عملی است که می تواند برای تشریح کنترل عصبی روند انقباض عضلانی بکر رود . واحد حرکتی شامل یک فیبر عصبی (تنه ی سلولی نورون حرکتی ،دندریتها ، اکسون و شاخه های متعدد ان) وتمام فیبر های عضلانی است که به انها عصب رسانده شده است
واژه واحدها پیرامون رفتار حرکتی است . تمام فیبر های عضلانی واحد حرکتی بصورت متحد عمل میکنند
در حین فعالیت عصبی ماهیجه ها هر موتو ر حرکتی کامل ،فعال یا غیر فعال است .هر ماهیچه شامل چندین واحد حرکتی ،از تعداد اندک تا چند هزار می باشد
4-1 آناتومی عضله
1-4-1رشته عضلانی واحد
هر رشته عضلانی واحد، حاوی دسته ای از تارهای ریز راه راه بنام فیبریلهاست. بدلیل خطوط روی این فیبریلها این نوع ماهیچه، ماهیچه راه راه نیز خوانده می شود. هرگاه رشته عضلانی پیامی را از مغز (از طریق دستگاه عصبی) دریافت کند، فیبریلهای آن همگی منقبض می شوند و رشته عضلانی را کوتاهتر می کنند. این امر بنوبه خود موجب عمل کششی کل ما هیچه بر روی استخوان می شود
2-4-1ساختار سلول ماهیچه
درون سارکوپلاسم سازه های بلند نازک روشن و تیره ای به اسم تارچه ماهیچه (فیلامان) در امتداد طولی قرار گرفته اند که به همین دلیل یک شکل راه راه پدید می آورند. هر تارچه شمال واحدهای متعددی به اسم سارکومر است
سارکومرها کوچکترین واحدهای قابل انقباض در یک فیبر عضلانی هستند. هزاران سارکومر یک زنجیره طولانی در هر تارچه ماهیچه تشکیل می دهند. غشاء Z نشانه مرز بین هر دو سارکومر با هم میباشد. طرح خطوط روشن و تیره به خاطر دو نوع تارچه پروتئینی طولی است. میوزین( فیلامان ضخیم تر) که منحصر به باند تیره A و منطقهH است و آکتین ( فیلامان نازکتر) که در باند روشن I و بین میوزین در سرهای باند تیره A قرار دارد
5-1انقباض عضلانی
وقتی ماهیچه منبسط می شود همه باندهای آن دیده می شود، در حالیکه در ماهیچه منقبض باند I روشن، باریک و بعد ناپدید می شود . زیرا تارچه های نازک آکتین در بین تارچه های ضخیم میوزین بطرف داخل، کشیده تر می شوند
رمز فرآیند انقباض ماهیچه در روی هم قرار گرفتن تارچه های ضخیم میوزین و تارچه های نازک آکتین است. تارچه های نازک آکتین از دو زنجیره از پروتئینهای گلبولی تروپومیوزین و تروپونین تشکیل شده اند. رشته های تروپومیوزین دور تارچه های نازک آکتین پیچیده اند و تروپونین در فاصله های منظم به تروپومیوزین متصل است
در حالت انبساط ، تروپونین تروپومیوزین را در حالتی نگاه می دارد که محل های تماس میوزین را بر روی تارچه های آکتین مسدود می کند
هنگامیکه سیگنال عصبی به سلول ماهیچه می رسد، شروع به آزادسازی یونهای کلسیم Ca++ از ذخیره های خاص حفره های T در شبکه سارکوپلاسمی می کند
تروپونین تمایل زیادی به یونهای کلسیم دارد و هنگامیکه یونهای کلسیم به تروپونین می چسبند، شکل مجتمع تروپونین-تروپومیوزین عوض می شود تا مناطق فعال را بر روی تارچه های آکتین آشکار سازد
یونهای کلسیم با آشکار ساختن مناطق فعال بر روی تارچه های آکتین، ماهیچه را به انقباض تحریک می کنند. در همان حال، سرهای تارچه میوزین بوسیله ATP فعال می شوند. ATP وقتی به ADP و فسفات آزاد تجزیه می شود، مقدار زیادی انرژی آزاد می کند. رهای میوزین خود را به منطقه های منتخب بر روی تارچه های آکتین مجاور می چسبانند تا رشته های آکتین – میوزین را که معمولاً پل عرضی نامیده می شوند، تشکیل دهند
بلافاصله بعد از آن ، پل های عرضی باز می شوند و سرهای میوزین دوباره به محل های آکتین بعدی وصل می شوند و به همین ترتیب ادامه می یابد
پیامد کلی این فرآیند این است که تارچه های آکتین کشیده می شوند و از تارچه های میوزین می گذرند، بطوریکه لبه ها بیش از زمان انبساط روی هم قرار می گیرند و بنابراین سارکومر را کوتاه می کنند. فرآیند ذکر شده در شکل 5 به تصویر در آمده است
6-1تحریک پذیری غشاء عضله
